

Dissolved organic matter – a missing component in the acid-base system

Karol Kuliński^(a,b), Bernd Schneider^(b)

^{a)}Institute of Oceanology of the Polish Academy of Sciences, Sopot, Poland ^{b)}Leibniz Institute for Baltic Sea Research, Warnemünde, Germany

Baltic Earth workshop 13.11.2013 Sopot

Seawater acid-base system

The measurable parameters:

- o C_T total CO₂ concentration (DIC)
- \circ A_T total alkalinity
- \circ pCO₂ partial pressure of CO₂
- o pH

It is possible to calculate 2 parameters when the following is known:

- o other 2 parameters
- o temperature & salinity
- o equilibrium constants for each of the acid dissociation reactions
- o total concentrations for each non-CO₂ substances

The pairs used in the calculations:

- \circ <u>C_T & A_T recommended, used in biogeochemical modelling</u>
- $A_{T} \& pH$ measured within the monitoring programs

The total alkalinity of seawater is defined as the excess of proton acceptors (bases formed from weak acids with a dissociation constant K \leq 10^{-4.5} at 25°C) over proton donors (acids with K>10^{-4.5}) and expressed as a hydrogen ion equivalent in one kilogram of sample (Dickson, 1981):

 $A_{T} = [HCO_{3}^{-}] + 2[CO_{3}^{2-}] + [B(OH)_{4}^{-}] + [OH^{-}] - [H^{-}] + \dots + [minor bases]$ $A_{T} = A_{inorganic} + A_{0} \times I$ DOM

Organic term is not included in the thermodynamic model of a seawater

Functional groups in DOM

hypothetical structure of humic like substances

The total alkalinity of seawater is defined as the excess of proton acceptors (bases formed from weak acids with a dissociation constant K \leq 10^{-4.5} at 25°C) over proton donors (acids with K>10^{-4.5}) and expressed as a hydrogen ion equivalent in one kilogram of sample (Dickson, 1981):

Influence of A_{org} on the calculations of pCO₂ and pH

r/v Meteor cruise, November 2011

Database

• C_T , A_T , pH, pCO₂

A_{org} is the difference between measured and calculated $A_{T}\left(\Delta A_{T}\right)$

$$A_{T} = A_{inorganic} + A_{org}$$

$$A_{org} = A_T - A_{inorganic}$$

 $A_{inorganic} - A_{T}$ calculated from C_{T} and pH or C_{T} and pCO₂

Influence of $A_{\rm org}$ on the calculations of pCO_2 and pH

(In)consistency of the acid-base system parameters

Monoprotic acid dissociation

$HOrg \leftrightarrow H^+ + Org^-$

$K_a = \frac{[H^+] \cdot [Org^-]}{[HOrg]}$

The mean DOM dissociation constant – $K_{\mbox{\scriptsize DOM}}$

[H⁺] – calculated from pH
A_{org} – organic alkalinity
DOC – well described method
f – share of DOC providing functional groups

$$f = 0.14$$

 $pK_{DOM} = 7.53$

Conclusions

- A_{org} term is missing in the A_T model
- A_{org} is the difference between measured and calculated A_{T} .
- $^{\bullet}A_{\text{org}}$ was found in the range 25-60 $\mu mol~kg^{\text{-1}}$ in the Baltic Sea water.
- Ignoring the DOM component in A_T model causes significant uncertainty of pH and pCO₂ in numerical studies, especially for the input data of A_T and C_T .
- \bullet Some 14% of DOC carry the functional groups dissociating in seawater. The pK_{DOM} in the Baltic Sea water amounts to 7.53
- Tests of "K_{DOM}" approach in numerical studies are required
- Further studies on DOM acid-base properties are required.

Thank you