

Climate state and global circulation patterns in the atmosphere

Anna Rutgersson

Professor of meteorology, Uppsala University Air-Water Exchange Platform, Uppsala University, anna.rutgersson@met.uu.se

The atmosphere

- Properties
- Processes
 - Radiation (SW and LW radiation)
 - Dynamics (mean meridional circ., eddies)
 - Turbulence
- Water and clouds

Temperature profile

Layers in the troposphere

UPPSALA UNIVERSITET

Processes

- Radiation (short-wave, SW, and long-wave, LW)
 - Source of energy (SW).
 - Mainly heats the surface (SW).
 - Small fraction of SW is absorbed in gases and clouds, large fraction of LW.
- Dynamics
 - Heat is carried from the equator and pole-ward.
 - Rotation creates a meridional transport of energy.
- Turbulence
 - Flow close to the surface is always turbulent due to viscosity of the air.
 - Turbulent motions carry heat/matter to/from the surface.

Radiation

- Radiation function of temperature of the radiating body, usually divide into:
 - short-wave (sun)
 - long-wave (colder bodies as earth and clouds)
- The sun (short-wave radation) is the external source driving the earth-atmosphere system.
- The atmospere is nearly transparent to short-wave radiation, about 20% is absorbed by gases (H₂O and O₃), particles (aerosols and cloud droplets).
- About 30% of the short-wave radiation is reflected by the surface or clouds.

Climate

- Uneven heating equator/poles
- Heat transport toward the poles

Copyright © 2003 Pearson Education, Inc., publishing as Benjamin Cummings.

Long-wave radiation

- Largest part of surface long-wave radiation is absorbed in atmospheric gases and aerosols (mainly H₂O and CO₂, but also CO, CH₄,N₂O and CFC's) but also in clouds.
- Long-wave radiation is also emitted back to the surface by gases and clouds (*Note: not reflected*).
- The absorption in gases and clouds of the long-wave radiaion is the GREEN-HOUSE EFFECT, without it the average surface temperature would be -19° C (instead of +14° C).
- There is also transport from (to) the surface by turbulent eddies (sensible and latent heat flux).

The Earth

- The earth is a sperical rotating body
 - different heating
 - rotating coordinate system
- Chemical components (N₂, O₂ also Ar, CO₂ etc)
 - absorption/emission in constituents
- Fysiography
 - distribution of land/ocean
 - montain ranges
- Water
 - water in different phases, phase changes
- Flow is never at rest, turbulence near the surface

Radiation balance

Figure 12.5 Annual mean northward energy transports required to equalize the pole-equator radiative imbalance. The solid line represents the top-of-the-atmosphere radiation budget, the dashed line represents the atmosphere, and the dotted line represents the ocean (From Zhang and Rossow, 1997).

Northward energy transport

Poleward transport of energy (in the atmosphere) by:

- 1. Mean meridional circulation (Hadley cell).
- 2. Stationary eddies (monsoon circulations).
- 3. Transient eddies (low pressure systems).

Mean meridional circulation

UPPSALA UNIVERSITET

- More solar heating at the equator, convection and rising air form a closed circulation – the 'Hadley cell'.
- Earth rotation (coriolis force) makes the Hadley cell break down at higher latitudes.

UNIVERSITET

Stationary eddies

Stationary circulation systems (fixed by lans/sea contrast) – transporting energy poleward

UPPSALA

Turbulence

Surface friction and surface convection give:

- Turbulence (not laminar flow)
- Changes in vertical wind (speed and direction)
- Latent and sensible surface heat fluxes

UPPSALA

UNIVERSITET

Observed average surface pressure and winds during January

Transient eddies

- Rotation of the earth makes the Hadley cell break down at 30°. The flow then goes west-east instead of north-south.
- Instabilities in this easterly flow generates transient eddies (cyclones).
- These eddies transport heat and water towards the poles along frontal surfaces.
- The cyclones move along the quasi-stationary 'Rossby waves' in the region 30°- 60°.
- On average they form the 'Ferrel cell'.

Rossby waves

UNIVER!

Eddy motions are the key energy carriers in midlatitudes

FIGURE 12.12. Meridional profiles of the vertical- and zonal-mean values of the northward transport of water vapor by all motions (a), transient eddies (b), stationary eddies (c), and mean meridional circulations (d) in m s⁻¹ g kg⁻¹ for annual, DJF, and JJA mean conditions. [To convert to total transport estimates multiply values by $10^{-3}2\pi R \cos \phi p_0/g = 4 \cos \phi$ to find values in units of 10^8 kg s⁻¹ or by 12.6 cos ϕ to find units in 10^{15} kg yr⁻¹, where $2\pi R \cos \phi =$ length of latitude circle and $p_0/g = 10^4$ kg m⁻² the total atmospheric mass per unit area.] (After Peixoto and Oort, 1983).

Mid-latitudinal hydrological cycle (North Atlantic – European sector)

Which cyclones are bringing moisture and heat to Europe?

European weather is to a lesser extent dependent on cyclones generated over GS, but is rather determined by the transients generated in the NE Atlantic

Cyclones causing extreme sea levels in the Baltic Sea – also primarily EA cyclones

Figure from Sergey Gulev

Post and Kouts 2014

The role of cyclones in moisture and energy transports

Figure from Sergey Gulev

Gavrikov and Gulev 2014

Water

- Water appears in three phases in the atmospheric system (vapor, liquid and solid).
- The interchange between phases is an important energy transfer mechanism.
- Water vapor is the main'green-house gas'.
- The amount of water vapor in the atmosphere is determined by the temperature.
- For a higher temperature, the atmosphere can hold more water. A positive feed-back mechanism.

pressure

Water

- Liquid water in the oceans, transport heat between different locations.
- Ice and snow changes the albedo of the surface.
- Ice changes the turbulent exchange (compared to open ocean).
- Surface loses energy when water evaporates. When the water vapor condenses into clouds the air is heated. When the water is precipitated the heat remains in the air.
- Evaporation is determined by water temperature or surface characteristics.

Clouds

- Water can be in liquid or solid forms. This affects the albedo of the system.
- Clouds absorb/reflects short-wave radiation and emits long-wave radiation.
- Cloud formation depends on condensation/freezing nuclei.
- Clouds either have a heating or a cooling effect in the atmosphere (positive or negative feedback...)

Mean annual cloud cover

