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Why do we need climate
models?

1. to better understand climate system
behaviour,

2. to explore the causes of past climate
change, and

3. to make predictions of possible future
climate change
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Current climate change

10 CMIP3 individual realisations (20C3M+SRES A1B)
U T T T T T

New temperature records
are often broken

—— CMIP3 Ensemble and 95% range

“— Had CRU
NCDC

GISTEMP

Many of the recent years
are record breakers

1990s warmer than the
1980s

Climate models

Hindcast Forecast

Temperature Anomaly (ref. 1980-1999)

ZOOOS warmer than the 1980 1985 1990 192}5 2000 2005 2010
1990s

Downloaded from www.realclimate.org 2013-02-10
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Daily Sea Ice Extent for: Sep 17, 2014

e 1981 2010 mean = 7. 2 million sq km

1970 1 980 1 990 2000 201 0 2020
slope =-10.3(+/-2.1) % per decade
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Observed globally averaged combined land and ocean
(a) surface temperature anomaly 1850-2012
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Climate Modeling

A numerical climate model

e Model describing the
General Circulation (GCM)
of the atmosphere and
oceans

surAce '&‘f%‘?l?&f“— i
[=2)

 |na GCM grid boxes covers BRI\
the whole Earth yaaWal

e Typical resolution (atm):

» 100-400 km \'{

(horizontally) ‘”\ L
> 20-40 vertical levels AN W v
> Time step ¢ 30 min Q f\ ;
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Spatial and temporal scales in the ocean
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Spatial and temporal scales in the ocean
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Spatial and temporal scales in the ocean
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Spatial and temporal scales in the ocean
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Spatial and temporal scales in the ocean

on (LES)
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Spatial and temporal scales in the ocean
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Characteristic length scale [m]

atial and temporal scales in the ocean
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Spatial and temporal scales in the ocean

Characteristic length scale [m]
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The atmosphere in a GCM
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Principle of running a GCM

o Start from a given state of the climate system
e Calculate time tendencies of state variables
 Add tendencies to the state of the system

* Derive new tendencies, add to the state, etc.

What state to start from?
The initial state is important for the entire integration
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Climate Modeling

Vilhelm Bjerknes (1862-1951):

"Das Problem der
Wettervorhersage,
betrachtet vom
Standpunkte der
Mechanik und der
Physik”
(Meteorologische
Zeitschrift, 1904)

http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Bjerknes_Vilhelm.html



How can we simulate the climate
100 years into the future when we
can’t even say something about
the weather In the next month?

Climate Is statistics of
weather!



Weather forecasts and climate scenarios
e Similarnumerical models

« Weather forecasts take as a starting point a given (well-
observed) weather situation. Climate scenarios often start in
preindustrial times (poor observations)

* Properties of the atmosphere implies that reliable weather
forecasts beyond ¢ 10 days can not be done

* Aclimate model can therefore not say anything about the
weather at any given day in the future (in 30 years, on New Years
Eve 2016, next month, etc.)

« But, models can be run for long time periods (weeks, months,
years, centuries, etc) and result in realistic weather situations

« Climate models simulate the statistical properties of the
weather



GCMs describe all relevant processes
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Limitations in a GCM (NWP) SMHI

—— ® Not all processes are resolved

= Approximations for e.g.
turbulence, clouds and
precipitation, ...

= Parametrizations (express small

scale phenomenon in large scale
parameters)

= GCMs (NWPs) compromise
between detailed descriptions
and high computational speed




Bullding more complex models

The Development of Climate models, Past, Present and Future

Wid-1970s
Almosphere

Source: IPCC, TAR, 2001

Frasent day Early 200057

Mid-1980s Eariy 18903 Late 1990s
Almaosphere Almosphere Atmosphere
Land surface Land surface Land surface
Ocean & sea-ice Ocean & saa-ice
Sulphate Sulphate Sulphate
aeroso asrasol asrosol
Man-sulphate Mon-sulphate
aerosol aerosol
/ Carbon cycle Carbon cycle
Sulphur Man-sulphate
aErosols

Ocean & seavice cycle model

miolel
Land carbaon
cyclemodel e
Ocean carbon *_awtamadal

cycle model
Drvnamic amic
vegelation v%ﬁm
Atmospheric Atmospheric
chamistry chamistry
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Today’s GCMs reproduce large parts of the
observed climate, both in terms of long

term averages, variability and extreme
conditions

Some weaknesses are that:

® GCMs only represent large scale
(>100km) phenomena explicitly,

not all GCMs include all relevant
processes (eg. carbon cycle feedback),

we do not fully understand how
relevant processes can be described in
the models (particularly clouds)

Climate Modeling

Evaluation of climate models

Annual mean precipitation: OBS vs. AOGCM

rnaxe=11.1%

ave=2 678
rAn=0.0B0B4 CMAP

atd=32 0BE

qug=2515
Ia{d—2.2+1
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What is resolved in a GCM?

Land-sea mask in three CMIP3 GCMs
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Spatial and temporal scales in the ocean
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Climate Modeling

g: gravitation,
h,: equivalent depth,
f. Coriolis parameter

latitude

(source: Smith et al., 2000)
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virvlar i golfströmmen är upplöst om ∆φ < 0.1°



satellite
observations

sea surface
temperature

(source:
A. Coward)
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Ocean Circulation and Climate Advanced e

Modelling Project

(source:
A. Coward)
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(source:
A. Coward)




(source:
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Sea surface temperature




Using Regional Climate Models
(RCMSs) to refine the informatio
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RCMs add detail and improves the results compared to the GCM
Comparing MMs to observations and driving boundary data sets

ECHOG _ __ | ECHOG+MMS5 ECA

R

066T-T96T 10} S}NSay

|
I
2 410 12 14 15 18 20 37 34 % 28

J. J. Gémez-Navarro, J. P. Montavez, S. Jerez, P. Jiménez-Guerrero, R. Lorente-Plazas, J. F. Gonzalez-Rouco, and E. Zorita. 2010. A regional climate
simulation over the Iberian Peninsula for the last millennium. Clim. Past, 7, 451-472, 2011
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Observed globally averaged combined land and ocean
(a) surface temperature anomaly 1850-2012

Annual average
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Report
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Decadal average

Temperature anomaly (°C) relative to 1961-1990
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Atmospheric CO,
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Emitted Resulting atmospheric Radiative forcing by emissions and drivers Lsveiof
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How good are the GCMs at reproducing the 20th C?

Simulated annual global mean surface temperatures

(a) Natural (b) Anthropogenic
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Emission scenarios
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IPCC SRES scenarios

A1: globalization, emphasis on human wealth
Globalized, intensive (market forces)

A2: regionalization, emphasis on human wealth
Regional, intensive (clash of civilizations)
B1: globalization, emphasis on sustainability and equity
Globalized, extensive (sustainable development)
B2: regionalization, emphasis on sustainability and
equity Regional, extensive (mixed green bag)
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New RCP scenarios

Representative Concentration Pathways (2007) - RCP
To be used in the IPCC 5™ assessment report on climate change (AR5, 2013/2014)

RCP 8.5, RCP 6.0, , and RCP 2.6 corresponds to the radiative forcing expressed in
W m-2in 2100 (corresponding CO2-equivalents: 1370, 850, and 490 ppmv)
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Future projections



Transient climate scenarios

Global annual mean temperature, anomaly w.r.t 1961-1990
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Figure SPM.7a

Global average surface temperature change

All Figures © IPCC 2013
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Figure SPM.7, Panel a

Complete caption of Figure SPM.7:
Figure SPM.7 | CMIP5 multi-model simulated time series from 1950 to 2100 for (a) change in global annual mean surface temperature relative to 1986–2005, (b) Northern Hemisphere September sea ice extent (5-year running mean), and (c) global mean ocean surface pH. Time series of projections and a measure of uncertainty (shading) are shown for scenarios RCP2.6 (blue) and RCP8.5 (red). Black (grey shading) is the modelled historical evolution using historical reconstructed forcings. The mean and associated uncertainties averaged over 2081−2100 are given for all RCP scenarios as colored vertical bars. The numbers of CMIP5 models used to calculate the multi-model mean is indicated. For sea ice extent (b), the projected mean and uncertainty (minimum-maximum range) of the subset of models that most closely reproduce the climatological mean state and 1979 to 2012 trend of the Arctic sea ice is given (number of models given in brackets). For completeness, the CMIP5 multi-model mean is also indicated with dotted lines. The dashed line represents nearly ice-free conditions (i.e., when sea ice extent is less than 106 km2 for at least five consecutive years). For further technical details see the Technical Summary Supplementary Material {Figures 6.28, 12.5, and 12.28–12.31; Figures TS.15, TS.17, and TS.20} 


Figure SPM.7b

Northern Hemisphere September sea ice extent
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Figure SPM.7, Panel b

Complete caption of Figure SPM.7:
Figure SPM.7 | CMIP5 multi-model simulated time series from 1950 to 2100 for (a) change in global annual mean surface temperature relative to 1986–2005, (b) Northern Hemisphere September sea ice extent (5-year running mean), and (c) global mean ocean surface pH. Time series of projections and a measure of uncertainty (shading) are shown for scenarios RCP2.6 (blue) and RCP8.5 (red). Black (grey shading) is the modelled historical evolution using historical reconstructed forcings. The mean and associated uncertainties averaged over 2081−2100 are given for all RCP scenarios as colored vertical bars. The numbers of CMIP5 models used to calculate the multi-model mean is indicated. For sea ice extent (b), the projected mean and uncertainty (minimum-maximum range) of the subset of models that most closely reproduce the climatological mean state and 1979 to 2012 trend of the Arctic sea ice is given (number of models given in brackets). For completeness, the CMIP5 multi-model mean is also indicated with dotted lines. The dashed line represents nearly ice-free conditions (i.e., when sea ice extent is less than 106 km2 for at least five consecutive years). For further technical details see the Technical Summary Supplementary Material {Figures 6.28, 12.5, and 12.28–12.31; Figures TS.15, TS.17, and TS.20} 


Figure SPM.7c

Global ocean surface pH
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Figure SPM.7, Panel c

Complete caption of Figure SPM.7:
Figure SPM.7 | CMIP5 multi-model simulated time series from 1950 to 2100 for (a) change in global annual mean surface temperature relative to 1986–2005, (b) Northern Hemisphere September sea ice extent (5-year running mean), and (c) global mean ocean surface pH. Time series of projections and a measure of uncertainty (shading) are shown for scenarios RCP2.6 (blue) and RCP8.5 (red). Black (grey shading) is the modelled historical evolution using historical reconstructed forcings. The mean and associated uncertainties averaged over 2081−2100 are given for all RCP scenarios as colored vertical bars. The numbers of CMIP5 models used to calculate the multi-model mean is indicated. For sea ice extent (b), the projected mean and uncertainty (minimum-maximum range) of the subset of models that most closely reproduce the climatological mean state and 1979 to 2012 trend of the Arctic sea ice is given (number of models given in brackets). For completeness, the CMIP5 multi-model mean is also indicated with dotted lines. The dashed line represents nearly ice-free conditions (i.e., when sea ice extent is less than 106 km2 for at least five consecutive years). For further technical details see the Technical Summary Supplementary Material {Figures 6.28, 12.5, and 12.28–12.31; Figures TS.15, TS.17, and TS.20} 


Figure SPM.8a,b

Maps of CMIP5 multi-model mean results
All Figures © IPCC 2013
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Figure SPM.8, Panels a and b

Complete caption of Figure SPM.8:
Figure SPM.8 | Maps of CMIP5 multi-model mean results for the scenarios RCP2.6 and RCP8.5 in 2081–2100 of (a) annual mean surface temperature change, (b) average percent change in annual mean precipitation, (c) Northern Hemisphere September sea ice extent, and (d) change in ocean surface pH. Changes in panels (a), (b) and (d) are shown relative to 1986–2005. The number of CMIP5 models used to calculate the multi-model mean is indicated in the upper right corner of each panel. For panels (a) and (b), hatching indicates regions where the multi-model mean is small compared to natural internal variability (i.e., less than one standard deviation of natural internal variability in 20-year means). Stippling indicates regions where the multi-model mean is large compared to natural internal variability (i.e., greater than two standard deviations of natural internal variability in 20-year means) and where at least 90% of models agree on the sign of change (see Box 12.1). In panel (c), the lines are the modelled means for 1986−2005; the filled areas are for the end of the century. The CMIP5 multi-model mean is given in white colour, the projected mean sea ice extent of a subset of models (number of models given in brackets) that most closely reproduce the climatological mean state and 1979 to 2012 trend of the Arctic sea ice extent is given in light blue colour. For further technical details see the Technical Summary Supplementary Material. {Figures 6.28, 12.11, 12.22, and 12.29; Figures TS.15, TS.16, TS.17, and TS.20} 
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Figure SPM.8, Panel c

Complete caption of Figure SPM.8:
Figure SPM.8 | Maps of CMIP5 multi-model mean results for the scenarios RCP2.6 and RCP8.5 in 2081–2100 of (a) annual mean surface temperature change, (b) average percent change in annual mean precipitation, (c) Northern Hemisphere September sea ice extent, and (d) change in ocean surface pH. Changes in panels (a), (b) and (d) are shown relative to 1986–2005. The number of CMIP5 models used to calculate the multi-model mean is indicated in the upper right corner of each panel. For panels (a) and (b), hatching indicates regions where the multi-model mean is small compared to natural internal variability (i.e., less than one standard deviation of natural internal variability in 20-year means). Stippling indicates regions where the multi-model mean is large compared to natural internal variability (i.e., greater than two standard deviations of natural internal variability in 20-year means) and where at least 90% of models agree on the sign of change (see Box 12.1). In panel (c), the lines are the modelled means for 1986−2005; the filled areas are for the end of the century. The CMIP5 multi-model mean is given in white colour, the projected mean sea ice extent of a subset of models (number of models given in brackets) that most closely reproduce the climatological mean state and 1979 to 2012 trend of the Arctic sea ice extent is given in light blue colour. For further technical details see the Technical Summary Supplementary Material. {Figures 6.28, 12.11, 12.22, and 12.29; Figures TS.15, TS.16, TS.17, and TS.20} 
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Figure SPM.8d

Maps of CMIP5 multi-model mean results
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Figure SPM.8, Panel d

Complete caption of Figure SPM.8:
Figure SPM.8 | Maps of CMIP5 multi-model mean results for the scenarios RCP2.6 and RCP8.5 in 2081–2100 of (a) annual mean surface temperature change, (b) average percent change in annual mean precipitation, (c) Northern Hemisphere September sea ice extent, and (d) change in ocean surface pH. Changes in panels (a), (b) and (d) are shown relative to 1986–2005. The number of CMIP5 models used to calculate the multi-model mean is indicated in the upper right corner of each panel. For panels (a) and (b), hatching indicates regions where the multi-model mean is small compared to natural internal variability (i.e., less than one standard deviation of natural internal variability in 20-year means). Stippling indicates regions where the multi-model mean is large compared to natural internal variability (i.e., greater than two standard deviations of natural internal variability in 20-year means) and where at least 90% of models agree on the sign of change (see Box 12.1). In panel (c), the lines are the modelled means for 1986−2005; the filled areas are for the end of the century. The CMIP5 multi-model mean is given in white colour, the projected mean sea ice extent of a subset of models (number of models given in brackets) that most closely reproduce the climatological mean state and 1979 to 2012 trend of the Arctic sea ice extent is given in light blue colour. For further technical details see the Technical Summary Supplementary Material. {Figures 6.28, 12.11, 12.22, and 12.29; Figures TS.15, TS.16, TS.17, and TS.20} 
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Figure SPM.9 | Projections of global mean sea level rise over the 21st century relative to 1986–2005 from the combination of the CMIP5 ensemble with process-based models, for RCP2.6 and RCP8.5. The assessed likely range is shown as a shaded band. The assessed likely ranges for the mean over the period 2081–2100 for all RCP scenarios are given as coloured vertical bars, with the corresponding median value given as a horizontal line. For further technical details see the Technical Summary Supplementary Material {Table 13.5, Figures 13.10 and 13.11; Figures TS.21 and TS.22}
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Figure SPM.10

Temperature increase and cumulative carbon emissions
All Figures © IPCC 2013
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Figure SPM.10 | Global mean surface temperature increase as a function of cumulative total global CO2 emissions from various lines of evidence. Multi-model results from a hierarchy of climate-carbon cycle models for each RCP until 2100 are shown with coloured lines and decadal means (dots). Some decadal means are labeled for clarity (e.g., 2050 indicating the decade 2040−2049). Model results over the historical period (1860 to 2010) are indicated in black. The coloured plume illustrates the multi-model spread over the four RCP scenarios and fades with the decreasing number of available models in RCP8.5. The multi-model mean and range simulated by CMIP5 models, forced by a CO2 increase of 1% per year (1% yr–1 CO2 simulations), is given by the thin black line and grey area. For a specific amount of cumulative CO2 emissions, the 1% per year CO2 simulations exhibit lower warming than those driven by RCPs, which include additional non-CO2 forcings. Temperature values are given relative to the 1861−1880 base period, emissions relative to 1870. Decadal averages are connected by straight lines. For further technical details see the Technical Summary Supplementary Material. {Figure 12.45; TS TFE.8, Figure 1} 


New scenarios in 2013

How will these differ from
previous ones?
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Old and New scenarios
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Uncertainties



el Climate of the Baltic Sea Region

Climate Modeling

Sources of uncertainty in climate
change projections

1. Emission scenarios
— Future behaviour of mankind

2. Modelling uncertainty

— Climate response to changes in atmospheric composition
(GCM)
— Modelling of ocean circulation, biogeochemistry, etc. (RCSM)

3. Natural climate variability
— Solar activity, volcanic eruptions

— Internal (=unforced) variability generated by the non-linear
dynamics of the climate system
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Uncertainty due to natural variability
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What about Sweden?

Change in Northern Sweden under A1B
2071-2100 versus1961-1990

| Choice of GCM has an impact!!

Temperature change ('C)
Precipitation change (%)

HadGEM1
HadCM3

PCM1

CCSM3
MRI-CGCM2.3.2
ECHAMS
ECHO-G

MIRDC3.2 (medres)

MIROC3.2 (hires)
IPSL-CM4
INM-CM3.0
INGY-ECHAM4
GISS-ER
GISS-EH

=== GISS-AOM

GFDL-CMz2. 1
GFDL-CMz.0
CSIRO-MK3.5
CSIRO-MK3.0
CNRM-CM3
CGCM3.1(T63)
CGCM3.1(T47)
BCCR-BCM2.0
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Winter 2m temperature (anomalies wrt the 1961-1990 mean)
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Climate of the Baltic Sea Region

Lecture 5: Physical Oceanography of the Baltic Sea and other regional seas, part |

Relative changes in precipitation (in percent) for the period 2090—
2099, relative to 1980-1999. Values are multi-model averages
based on the SRES A1B scenario for December to February (left)
and June to August (right).
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Climate of the Baltic Sea Region

Lecture 5: Physical Oceanography of the Baltic Sea and other regional seas, part |

Relative changes in precipitation (in percent) for the period 2090—
2099, relative to 1980-1999. Values are multi-model averages
based on the SRES A1B scenario for December to February (left)

and June to August (right).
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Regional changes



7| TheBAcc Author Team

| Assessment
of Climate Change for
the Baltic Sea Basin

@ Springer

Assessment of Climate Change
for the Baltic Sea

' The BACC Author Team (2008,

2015)

http://www.baltic.earth/BACC?2/
Index.html

SUPPORT




SMHI
Q North Sea Region
0S5 CCA Climate Change Assessment

Morth 5ea Region Climate Change Assessment

. -\-}_ ".I | T 1
L # A | . ¥ a5
g 3 \ {
A - X . ) et
- - . ks
’ Ltaachie s, L
1,

Ll
#

http://noscca.hzg.de

Quante M, Colijn F (eds)
(2016) North Sea Region
Climate Change
Assessment. Regional
Climate Studies, Springer
Verlag, Cham, Heidelberg,
New York, Dordrecht,
London

In press (will be published
In August 2016)


http://noscca.hzg.de/

RCP45

W W E XE AFE

550N

50°N

vl

4N

3N

30N - g

- significant
~ : robust
RCP85

0w W ¢ IE W0 45E

» : significant
~: robust

60 [%]

45
35
25
15

-5

-15
-25

& [%]

» : significant
~ : robust

RCP45

I18E B 45°E

s
s
e
0N
asn -/

0N+ _§

Changes are Significant
Changes are Robust

RCP85

W W ISE 0E 48

Changes are Significant
Changes are Robust

Changes are Significant
Changes are Robust

IK]

EURO-CORDEX: new
high-resolution climate
change projections
for European impact
research
(Jacob et al., 2013)



Regional climate
system simulations
(Earth System
modeling)



Advanced modeling tool for scenarios of the Baltic Sea
ECOsystem to SUPPORT decision making
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Thank you very much for your attention!
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