

Responses of organic contaminant cycling to multiple drivers in the Baltic Sea

Emma Undeman

emma.undeman@su.se

Tallinn Nov 2018

Stockholm University Baltic Sea Centre

Climate change Eutrophication Overfishing

Organic chemicals' emissions, transport, fate and bioaccumulation

Distribution in environment and biota depends on:

Eutrophication

primary production \rightarrow

- air-sea gaseous exchange
- downward transport via sedimentation
- bioavailability

Organic contaminants – many sorb to organic carbon

hypoxia/anoxia \rightarrow

reduced bioturbation

- light penetration \rightarrow
- reduced photolysis

 food web structure → bioaccumulation

Case study for real environment: the Baltic Sea

BALTSEM = hydrodynamic model with biogeochemistry → "eutrophication model"

Contaminant transport and transformation model POPCYCLING (the marine part only)

BALTSEM-POP = hydrodynamics + biogeochemistry + organic contaminants

Case study for real environment: the Baltic Sea Stockholm University

Nutrients (N and P):

- "Increased load (IL)" = denser livestock, ca 50% increase in TP and TN river loads
- "Reduced load (RL)" = HELCOM Baltic Sea Action Plan successfully implemented (reduced nutrient emissions)

Compared average chemical concentration for last 10 years (years 2090-2100) in surface water simulated with IL and RL scenarios Particulate Organic Carbon POC (plankton, zooplankton and detritus) last 10 years of simulation:

Gotland Sea, 10 m

Predicted concentrations of "PCB180" in surface water

Sensitivity to change in trophic status linked to hydrophobicity of the compound

Time (last year of simulation)

Climate change

Temperatures \rightarrow

- partitioning between air-water, air-soil, air-vegetation etc.,
- reaction rates

Windspeed and frequency of extreme events \rightarrow

- air-water exchange
- resuspension

Precipitation \rightarrow

- transport via runoff
- erosion + OC transport
- wet deposition (atm)

lce cover \rightarrow

- volatilization from sea
- re-mobilization of archived contaminants
 - food web structure→ bioaccumulation

Land use \rightarrow emissions Vector control \rightarrow emissions Forest fires \rightarrow formation

Study	Scale scope	Chemical compound	Changes	Results
McKone et al. [12]	Regional (W. USA),	НСВ	T↑ (mean 2.5°C)	Mean cancer risk \downarrow (22%)
Macleod et al. [13]	Summa Impact us in env. Co	ry of summa ually max facto ncentrations	ary: or 2 difference	C _{AIR} ↑ by max 2-fold with high NAO index under current extent of variability
Valle et al. [14]	Parameter	changed:		$\begin{array}{c} C_{AIR}\uparrow\sim\!\!10\%\\ C_{SED}\downarrow 20\!\!-\!\!45\%\\ C_{WAT}\downarrow 2\!\!-\!\!10\%\\ C_{SPM}\downarrow 20\!\!-\!\!50\% \text{ vs control} \end{array}$
Lamon et al. [15]	G G Frecipitatio Wind speed Emissions	re ↑ n Δ or ↓ d Δ ↑		at the end of 50-year simulation (i.e., \uparrow dissipation) (1) C _{AIR} in Arctic \uparrow by ~2.0- to 2.5-fold; \uparrow emissions is the main factor (2) P _{OV} \downarrow
Ma and Cao [19]	Degradation Clo Ocean curr POC,DOC	n ↑ ents Δ ↑		4-50% increase in air concentration compared to mean ± 4 and $\pm 53\%$ change from mean air
Borgå et al. [16]	Result con Cair ↑ Csed, Cwat Cfish ↑ or ↓	n pared to baseli t, Csusp part mtrl	<u>ne:</u> ↓	concentration for α - and γ -HCH, respectively $C_{FISH} \downarrow$ vs control γ -HCH: $F_{MAX} = 0.78-0.93$ PCB-52: $F_{MAX} = 0.44-0.62$ PCB-153: $F_{MAX} = 0.33-0.44$
Ng and Grey [17]	(Great Lakes), D coupled bioenergetics/ bioaccumulation model	rCD-//	on 100-year projections for Lake Superior	C _{FISH} ↑ vs control species-specific and confounded by predator-prey dynamics
n et al 2013			temperatures	$F_{\rm MAX} = {\rm approx} 3$

Table 2. Summary of recent multimedia fate and bioaccumulation model output incorporating long-term GCC scenarios^a

Climate change in the Baltic Sea

Modeling study applying the POPCYCLING-Baltic model yrs. 2071-2100, downscaling of IPCC scenarios

Temperature+, Precipitation+, Wind speed+, POC+

Depending on mode of emission, chemical and scenario $\overrightarrow{}$

Concentration <u>ratios</u> (scenario/reference) ca 0.5 to 3

Table 1

Summary of the modelled climate change-induced impacts on the concentrations of hypothetical perfectly-persistent organic chemicals (considering all four studied climate variables).

	Air	Forest canopy	Forest soil	Agricultural soil	Fresh water	Fresh water sediment	Coastal and open ocean water	Coastal and open ocean sediment
Volatile fliers	+/+/+	+/+/+	±/±/-	±/±/-	+/-/±	+/-/±	+/±/+	+/-/±
Water soluble and relatively volatile multiple hoppers	+/+/+	+/+/+	±/+/—	+/+/-	+/±/+	+/±/+	+/±/+	+/±/+
Water soluble swimmers	±/+/+	-/-/-	-/±/-	-/±/-	-/±/-	-/-/-	-/±/±	+/+/+
Multimedia multiple hoppers	+/+/+	±/±/±	-/-/-	-/-/-	-/-/-	-/-/-	+/±/±	+/±/±
Very hydrophobic and semi-volatile multiple hoppers	+/+/+	±/+/+	-/-/-	- - -	±/-/-	±/-/-	+/+/+	-/-/-
Particle-bound single hoppers	-/+/+	±/+/+	±/+/-	-/±/-	±/-/-	±/-/-	±/±/±	±/±/+

"+" indicates increase; "-" indicates decrease; "±" indicates both increasing and decreasing impacts were observed for that specific group of chemicals. Symbols from left to right correspond to emission to air, water and soil. Note that here the predicted impacts are not discriminated according to the studied climate scenarios, because in general the impacts from the two climate scenarios are the same.

Kong et al 2014

Climate change and bioaccumulation in an Arctic food chain – modelling study

Fixed total water concentration:

Scenario: *Temperature* POC

Temperature influences:

Lipid fraction (-) metabolic degradation (+) growth rate (+) feeding rate (+) ventilation rate (+)

POC concentration influences: dissolved and particle bound concentrations in water

Borgå et al 2010

Example: Indirect effect on polar bears

- Climate change → earlier break-up of ice, less ice extent
- Polar bears forced onshore
- Limits access to food (seals)
- Starvation → consume lipid reserves ("solvent depletion")
- POPs not excreted, concentrated in smaller volume of lipid → higher concentrations in blood and target tissues. More likely to exceed toxicity threshold levels

Jenssen et al 2015, Riget et al 2015

Fisheries

changes in food web structure \rightarrow

- number of trophic levels
- changing diet, type of food chain e.g. pelagic to benthic
- age of organisms

fitness of organisms \rightarrow

- lipid content
- growth rate

Summary

Challenge:

Chemical dependent

Environmental compartment dependent

Organism/food chain dependent

Direct or indirect

Direct impact – usually within a factor 2 changing concentrations, but large uncertainties in estimations

Indirect impacts – potentially higher (changing emissions, trophic levels in food chain)

